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REGULARITY OF ISOMETRIC IMMERSIONS
OF POSITIVELY CURVED RIEMANNIAN MANIFOLDS
AND ITS ANALOGY WITH CR GEOMETRY

CHONG-KYU HAN

Abstract

Let M be an n-dimensional Riemannian manifold and F be an isometric
immersion of M into R**1. It is shown that under certain conditions on
the sign of principal curvatures of F(M), F satisfies an over-determined
system of elliptic partial differential equations after one adds the scalar
curvature equation. As a corollary, if M is an analytic manifold of
positive sectional curvature, F' is analytic and uniquely determined by
F(P) and dF(P) at a reference point P of M. An analogous problem
in CR geometry is proposed.

0. Introduction and statement of the main results

We are concerned in this paper with the regularity and the uniqueness of
isometric immersions of n-dimensional Riemannian manifolds into R**!. We
deal with analytic (C*) manifolds. However, one can get a C* version of this
paper by replacing every C% by C®. Consider first the following well-known
fact: If M is a C¥ connected Riemannian manifold and F is a continuously
differentiable isometry of M onto another C* Riemannian manifold M , then
F is C¥. Moreover, if O is a point of M, then F is uniquely determined by
F(O) and the first partial derivatives of F' at O. The reason is that locally
F can be expressed as a linear mapping between the normal coordinates of
M and M near O and F(O), respectively. Analyticity and uniqueness with
respect to the initial data at one point follow from the viewpoint of the local
equivalence problem also under the assumption F € C? (cf. [2] and [4]). Our
question is whether one can remove the hypothesis of analyticity of M when
Misa hypersurface in a Euclidean space; namely,

Question 1. Let M be an n-dimensional C* Riemannian manifold and
F = (f,---,f*t1) be a C*, k > 0, isometric immersion of M into R™*1.
Then will F be C¥? And will F be uniquely determined by F(O) and the
first partial derivatives of F' at a point?
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The following example shows that if M is flat, F is neither C* nor deter-
mined by its partial derivatives at a point.

Example 1. Let v(s) = (y'(s),y%(s)) be a plane curve parametrized by
arclength s. If v is C™ but not C*, the mapping (s,t) — (y(s),¥%(s),t) is a
C* isometric immersion of R? into R?, which is not C¥. Thus we see that
certain curvature conditions must be imposed. We here prove

Theorem 1. Let M be a C¥ Riemannian manifold of dimension n > 2
and let F = (f1,---, f**1) be a C? isometric immersion of M into R™+1.
Let O € M, O = F(O) and M = F(M). Let \y,--+ , A, be the principal
curvatures ofM at O and let

A = Zx\j for eachk=1,--- ,n.
gk
Suppose that each Aj, j =1,--- ,n, is nonzero and A1,--- , Ay, are all positive
or all negative. Then F is C¥ on a neighborhood of O.

The idea of the proof is to show that (f!,---,f™*!) satisfies a system of
nonlinear partial differential equations of second order, where each equation
is C* in its arguments and the system is elliptic at (f,---, f®*1). Then the
analyticity of F follows from the theory of elliptic partial differential equa-
tions (cf. {7, p. 15]). A detailed proof will be presented in §1. In the statement
of Theorem 1, R™*! can be replaced by a C“ Riemannian manifold of
dimension n + 1, which can be proved by a slight modification of our proof
of Theorem 1.

By combining Theorem 1 and classical rigidity theorems for hypersurfaces
in R®*1 we can prove the following theorems on the regularity and uniqueness
of isometric immersions. '

Theorem 2. Suppose that M is a C¥ connected Riemannian manifold
of dimension n > 3 of positive sectional curvature and F: M — R"*! 45 q
C? isometric immersion. Then F is C¥. Moreover, if F' is another such
isometric immersion there exists an isometry 7 of R®T! such that F' =70 F.

Theorem 3. Suppose that M is a 2-dimensional compact C* Rieman-
nian manifold of positive Gaussian curvature and F: M — R2 is a C? iso-
metric immersion. Then F is C*¥. Moreover, if F' is another such isometric
immersion there exists an isometry 7 of R® such that F’ =70F.

1. Proof of the theorems

Proof of Theorem 1. Showing analyticity of a mapping is a local prob-
lem, so let M be a “germ” of a C* manifold at a reference point O € M.
Let (y!,---,y*t!) be the standard coordinates of R®*! and write F =
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(fY,---, f**1) coordinatewise. We may assume that O is the origin of R"+1
and M is tangent to the plane y"*! = 0. Let N be a unit normal vector field
of M and A be the second fundamental form; namely,

A(X,Y) = (Vs N,Y) V tangent vectors X,Y of M at O,

where V' is the covariant differentiation of R™*!. The eigenvalues A;,--- , A,
of the linear transformation v — V., N are called the principal curvatures at
O. Let V1, ,Up be the orthonormal eigenvectors which correspond to the
principal curvatures Aq,---,A,. Let {e1,- - ,e,} be an orthonormal frame
over M such that F.e; = v; at O. We see that

n+1
€ = Feej = Z(e,-f”) o F~19/0y,.

v=1

We may assume further that
€; =0/0y; at 0,j=1,--,n.

Then we have

0 ifj#v,

1.1 e; fY(0) =
Ly iro={] "
Now let (71, , fln+1) be the components of N and let n; = ;0 F. To express
n; in terms of partial derivatives of (f1,---, f**1) consider the matrix

elfl 61fn+1

p=| : : € O(n).
enfl ... enfrt!
m Nn+1

We may assume that 7,41(0) = 1 so that det M = 1. Choose a local coordi-
nate system (z1,--- ,,) of M such that e; = 8/dz; at 0, 5 =1,--- ,n. Since
M~ = M, each n; is equal to its cofactor in P. Thus we have

(12) n; = (ejfn+1)Bj + Ze)\fn+1§j)\a .7 =1,---,n,
A#]
and np1 = (enf!) - (enf™) + ¢, where Bj, ¢a, ¢ are C functions in

(z,D%fi:i # n+1, |a| < 1) such that B; = 1, ¢» = 0 and ¢ = 0 at
(0, D> £(0)).
Now let A(z) = [Ai;(z)] be the symmetric matrix defined by

Aij(z) = A(8;,8;) o F = (Vs N,&;) o F.
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We express A;;(z) in terms of (f!,---, f*1) and their partial derivatives:
VEN = (&ifin,  Eiffni) = (i1, €ifings) 0 F 70
But by (1.1) and (1.2) we have

ek = (esex S"T)Be + > _ (eienS/" ! )ger + Ciks k=1,--+ ,m,

Ak
and ;7n4+1 = C; n41, where each Gy and C; 1 are C* functions of (z, Deft.
1 #n+1, |a| £2), and thus we see that
(1.3) Ay(z) = (e,-ejf"+1)BJ~(ejfj) + Z(exe,,f”)gj"u,

where each ¢§, is a C* function in (z, D%ft: |a] < 1), which vanishes at
(0, D*f%(0)). Since & = v; at O, § = 1,--- ,n, which is the eigenvector of the
linear transformation v — V4 N, we have
0 ifi#£j7
(1.4) Ai(0) = { e
Ay ifi=y.

Now let S and § be the scalar curvatures of M and M, respectively. Since F
is an isometry, S(z) = S(F(z)). Let det(A(z) — M) = 3., ar(z)X* be the
characteristic polynomial of A. Then S(F(z)) = 2az(z) (cf. [6]). But

25(z) = 25(F@) = ar(e) = 3 AiAjs + Y AgmAgme,

i<y
where each term in the second sum involves a nondiagonal entry, therefore
vanishes at O by (1.4). Substituting (1.3) for the A;;’s we have

1 ; :

| 55() =D _(eseif ™) (eje; ") BiBj(eif*) (e f7)

(1.5) i<y
+ Z(ekeufu)(ek’eu’fl/)gf:x'u'a

where each g;\’,‘j;\,u, is a C¥ function in (z,D*f*: |a| < 1), which vanishes
at (0,D%f%(0)). (1.5) is an equation for (f1,---, f**1). To get other equa-
tions, we observe that the first n rows of P are orthonormal and therefore
(eifV)(es f1) + -+ + (e f™ 1) (e; f*+1) = 6;; (Kronecker’s delta).

Apply e; to the above to get

(1.6)  (eseif)(ei f1) + (eif ) (eiei f1) + -+ + (eies f™ ) (es /71)
+(6,;fn+1)(e,'6jfn+1) =0.
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We shall show that the system of equations (1.6) with 4,7 = 1,---,n and

(1.5) is elliptic at (f',---,f™*!). Express (1.6) and (1.5) in terms of
coordinates (1, ,Z,).

aft f o 0
(82:,) flaz, dz; (82:182331‘)

] afn+1 afn+1 o 8
! n+1 2 il
(16) oot (82:1> f 813 + Ox; (811 Oz, ! >

d 9
+Z (32,\ 0z fu) xu = Hij(z, Dok =

a\? ., E N afiaff
> () (o) roemm il

1<j
v a 0 v vv' 1
+ Z (8:1:,\ 8:1: > <@@f ) Surp! 55(2)

= H(z,D*f*) =0,

(1.5

where each ¢, gj\’::\,u, is a C* function of (z, D*f*: |a} < 1) and vanishes at
(0, D*£*(0)). These ¢’s are different from the ¢’s that previously appeared.
Consider the linear partial differential operators L;; and L defined by

0H;; oH
Lyw= Z g D%w ko Lw= Z —TDawk,
=2 (D"‘f ) eI )
k=1, n+1 k=1, n+1
where w = (w!, -+ ,w™*!). Then L,; and Lw are of the following form:
o 3 \2 Ja 9
Lz]’w—E”(a—wi) w +G”a$i 8:1:Jw
(1.7)

a 0
+ Z S'Xua—x;'az’w" + lower order terms,

I (BN g (2N ni
Lw_ij#(az,) f J 8x¢ v

(1.8)
+ Z 55‘/“5% 8iu w" + lower order terms,

where E;;, Gij, K;; are C* functions in (2, D*f*: |a| < 1) with values 1 at
(0, D*f*(0)), each ¢¥, is a C* function of (z, D*f*: [a| < 1) which vanishes



482 CHONG-KYU HAN

t (0, D* f*(0)) and each ¢%, is a C¥ function of (z, D> fk: |a| < 2) which
vanishes at (0, D®f*(0)). These ¢’s are different from those which appeared
previously. Consider the principal symbol o(z, §) of the system (1.7), (1.8)
(cf. [7)). o(z,€) is a matrix of size (n? + 1) x (n + 1). We decompose o(z, £)
into n + 1 blocks as

01 (Ia 6)

wO=1 e |

U'n+1(ﬂ7, 6)
where 0,(z, €), 7 = 1, - - , n, is the principal symbol matrix of the system (1.7)
with¢ =1,--- ,n and fixed 7, and 6,41 is that of (1.8). Thenforj =1, --- ,n,

&&G 0 - 0 &2 0 -+ - 0
0 && - 0 &2 O --- - 0
7;(0,€) = Do : Do Do
0 0 e 0 &% o ... §n§j 0 nx(n+1)

jth column

Thus we see that V¢ # 0 the first n columns of ¢(0, &) are linearly independent.
But the last entry of 6,41(0, ) is

2
= \im 0
1 n
5 Z Zezezfn+1(0 6_727
J=1 \i#J

where e;e; f*T1(0) = A;;(0) = A;, by (1.3) and (1.4),

Z €2,

which is nonzero ¥¢ # 0 by the hypothesis of the theorem. Therefore, (n + 1)
columns of ¢(0, £) are linearly independent.

Now regard o(z, £) as a matrix valued function on  x S"~1, where 2 is
a neighborhood of the origin of R™. Since S”~! is compact we see that there
is a neighborhood V' C 2 of the origin of R™ so that o(z, §) has rank n + 1,
Vz € (¥, V¢ € S"~1. This completes the proof of Theorem 1.

Let vj, 7 =1, .- ,n, be as in the proof of Theorem 1. Then the sectional
curvature K(v; A v;) of the plane v; A v; is given by K(v; Av;) = AiA; (cf.
[6]). Therefore, if M (and hence M) has positive sectional curvature all the

Il
[
NgE
N/

b
Nilp—t



REGULARITY OF ISOMETRIC IMMERSIONS 483

principal curvatures A;,---, A, are of the same sign. Thus, analyticity of
F in Theorems 2 and 3 follows from Theorem 1. The uniqueness part of
Theorems 2 and 3 follows from the following rigidity theorems. Recall that a
hypersurface M; is said to be rigid if for any isometry o of M; onto another
hypersurface M, there exists an isometry 7 of R**! such that 79 = 7 on M;.

Theorem [5, p. 120]. Ifn > 3 and M is an oriented hypersurface in
R™*1 with positive sectional curvature, then M is rigid.

Theorem (Cohn-Vossen [5, p.122]). A compact surface of positive
Gausstan curvature 1s rigid.

2. Analogy with CR geometry

The author has been motivated from the following analogous problem in
CR geometry. We refer to (3] for definitions.

Question 2. Let M be a C¥ CR manifold of dimension 2n + d of CR
codimension d and F: M — C"*¢ is a CR immersion of differentiability C¥,
k > 0. Then will F be C*?

The following example shows that certain “curvature” conditions must be
imposed on M.

Example 2. Let M = C!'xR! = {(z+1y,t)} and let y(¢) = u(t)+7v(t) be
a C°°, but not C%, complex valued function. Then the mapping (z +z'y,vt) —
(z + 1y, 7(t)) € C? is a C* CR immersion which is not C*. Observe that M
is Levi flat.

Let us now consider the cases where M is a C¥ hypersurface in C"*4,
Let F = (f,---,f™%?) be a system of CR functions of M where dF is of
the maximal rank at each point of M. We shall call such F a local CR
diffeomorphism instead of CR immersion. Then the following are equivalent:

(i) Every C* local CR diffeomorphism F is C¥.

(i) For a C* local CR diffeomorphism F and P € M, there exist a
neighborhood 2 of P in C**4 so that F extends to a biholomorphic
mapping of Qp.

(iii) For a C* CR function f and P € M, there exists a neighborhood €25
of P in C"t¢ so that f extends to a holomorphic function of {15.

See [1] for related results.
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